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SUMMARY

Towed and sting-supported cones were tested in the wake of various

payloads at supersonic speeds to determine their drag and stability

characteristics. The investigation extended over a Mach number range

from 1.57 to 4.65 and included such variables as Reynolds number, cone

angle, ratio of cone base diameter to payload base diameter, and

trailing distance.

The results of this investigation showed that the cones towed in

the wake of a symmetrical payload at supersonic speeds, in general,

have good drag and stability characteristics if towed in the supersonic

flow region.

A cone with an included angle between 80° and 90° will give maxi-

mum drag while still maintaining stability in the Mach number region

of this investigation. In order to minimize wake effects, the ratio of

cone base diameter to payload base diameter should be at least one and

preferably around three. A trailing distance of three times the pay-

load base diameter, in most cases, is of sufficient length to avoid low

drag and instability of the decelerator.

INTRODUCTION

The investigation discussed herein is part of an overall program

to study possible decelerator configurations capable of providing

satisfactory deceleration performance at supersonic speeds. Such

decelerators would be employed for the recovery of spacecraft, launch

vehicles, and other high-speed vehicles. Parachutes, balloons, retro-

rockets, conical rings, and cones are some of the drag devices that are

being considered as decelerators. (See refs. 1 to 3.) All of these

drag devices have certain advantages and disadvantages, and the final

selection for a particular application will be based upon such factors

as weight, drag coefficient, stability, and simplicity of design.

Because of the geometric simplicity of cones and their wide application,
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aerodynamic characteristics of cones have been studied extensively and

are comparatively well understood. The use ¢f cones as towed decelerators,

however, introduces factors that require study inasmuch as these cones

are in the wake of a payload and their usefulness will be limited to the

flow regions and cone angles resulting in satisfactory decelerator char-
acteristics. Cones were tested over a Mach rumber range from 1.57 to

4.65 to determine the effect of Reynolds number, cone angle, relative

size of the cone with respect to the payload, and trailing distance on

the drag coefficient of a cone in the wake o_ a payload.

SYMBOLS

A

CD

CD, p

dp

dc

l

_/dp

dc/dp

M_

Pl

POO

q_

cone base area, sq ft

drag coefficient, Drag
q A

pressure drag coefficient,

payload base diameter, in.

cone base diameter, in.

P_ - Po_ A

qoo A

tow-cable length (fig. 3), in.

trailing distance in terms of payload base diameters

ratio of cone base diameter to pay_.oad base diameter

free-stream Mach number

local pressure, ib/sq ft

free-stream static pressure, ib/sq ft

free-stream dynamic pressure, ib/s_[ ft
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@ cone angle (see fig. 3), deg
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APPARATUSANDMODELS

Wind Tunnei

The tests were conducted in the Langley Unitary Plan wind tunnel,
which is a variable-pressure return-flow tunnel. The tunnel has two test
sections which are 4 feet square and approximately 7 feet in length.
The nozzles leading to the test sections are asymmetric sliding-block-
type nozzles, and the Machnumbermaybe varied continuously through a
range from 1.5 to 2.8 in one test section and from 2.3 to 4.65 in the
other. Further details of the wind tunnel maybe found in reference 4.

Models

A sketch and photographs of the test section and payload support
system are shownin figure i. The support system consisted of two thin
struts spanning the tunnel in the horizontal plane. The payload was
held in the center of the tunnel by these struts. The three types of
payloads used in this investigation are shown in figure 2. Payload A
had a flared body with the flare starting at the termination of the nose
cone and extending to the base; payload B had a cylindrical body, and
payload C had a cylindrical body with flared afterbody. The payloads
were tested under the conditions indicated in table I. The two differ-
ent size 60° cones tested with payload A were sting mountedon a movable
strut with the balance inside the cone. During most of the runs a rod
i/2 inch in diameter, which extended from the vertex of the cone to the
base of the payload, was attached to the cone to simulate a tow cable.
The drag coefficients obtained for sting-mounted cones tested behind
payload A were not corrected for sting interference. The payloads B
and C had the balance located inside them. Conestested with these pay-
loads (see table I) were attached with a 1/16-inch tow cable to a drum
which was mountedon the balance inside the payload (see figs. i and 3).
The balance with the motor-driven drum comprised a convenient system
for testing towed decelerators since the distance between payload and
cone could be varied during the test without tunnel shutdown. The
existence of rough flow as well as back flow in the test section during
the starting and shutdownof the tunnel necessitated the adoption of
somemeansto stabilize the cone during these periods. A string tied
from the back of the cone to the knuckle on the movable strut prevented
the cone from striking the test-section wall or wrapping around the
supporting strut. This string was slack during the test so that it had
little interference on the cone.
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TESTS AND ACCURAC I_ S

Most of the drag coefficients presented herein for both sting-

mounted and towed cones are for a Reynolds n_mber per foot of approxi-

mately 3 × 106. Reynolds number effect was determined for one configura-

tion by a change in tunnel stagnation pressule. Table I presents the

cone-payload combinations and the Mach numbers at which they were tested.

The accuracy of the individual quantities and coefficients is esti-

mated to be within the following limits:

CD ................................ +-0.02

+0.5_, in .............................
M_ (1.57 to 2.87; test section i) ................ +0.02

M_ (2.30 to 4.65; test section 2) ................ +0.05
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RESULTS AND DISCUSSION

Pressure Drag on Cones

The drag of a cone consists primarily o_" pressure drag with a small

contribution of skin-friction drag. The pre:;sure drag of a cone is com-

posed of forebody pressure drag, which can b_ readily determined from

theory, and base pressure drag, which is difficult to evaluate by theo-

retical means even for the most simple case. The forebody pressure drag

as determined by the shock-wave theory for s,:veral cone angles and some

experimental base pressure drag data for 60 ° cones are presented in fig-

ure 4 along with the base drag associated wi_h zero base pressure. The

boundary shown for the forebody indicates detachment of the shock from

a cone, which in the case of towed cones is {ccompanied by loss of drag

and stability. The base drag could amount t,) a considerable portion of

the total pressure drag of a cone at lower Mlch numbers; however, with

increasing Mach number the importance of bas_ pressure drag rapidly

diminishes.

Although large increments in drag can b_ gained by increasing the

cone angle, there is an accompanying decreas_ in stability that would

be expected from the theory of reference 5- In the present investiga-

tion it was found that the stability of the _one approaches its critical

value in the neighborhood of 8 = 90 ° . This finding does not imply that

90 ° is the maximum cone angle that can be used in cone-decelerators,

inasmuch as there is no well-defined boundary that determines stable and

unstable cones. Even though the stability of a 90o cone improved slightly

at higher Mach numbers and longer tow-cable lengths, the 90o cone was not

as stable as cones having lesser cone angles.
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Measured Drag on Towed and Sting-Mounted Cones

Reynolds number effect on the dra m coefficient of a 60 ° cone.- The

data presented in this paper are confined to a range of Reynolds numbers

per foot of approximately 3 x 106 to 6 x 106 . The 60 ° cone tested in

the wake of payload A at Mach numbers of 1.57 and 2.00 showed no Reynolds

number effect on the drag coefficient, as can be seen in figure 5. The

small difference in drag coefficients of a 60 ° cone at a Mach number

of 2.00 is within the experimental accuracy. Similar results were

obtained in reference 6, where a 30° cone was tested in the free stream

at a Mach number of 2.41. The transition region shown in figure 5 char-

acterizes the type of flow field surrounding the cone; this region will

be discussed in subsequent paragraphs.

Effect of relative size of the decelerator with respect to the

payload.- The drag coefficient for two 60 ° cones of different base diam-

eters is shown in figure 6. Both cones had smaller base diameters than

the payload; the larger of the cone diameters was 86 percent and the

smaller 66 percent of the payload A base diameter. Even though the dif-

ference in size between the two cones was not very large, there were some

significant trends that could be observed in figure 6. The drag coeffi-

cient was higher for the larger cone throughout the _/dp range at all

Mach numbers, and a small increase in the CD increment was noticeable

with increase in Mach number. Since the two cones were geometrically sim-

ilar and Reynolds number effects were negligible, they should have the

same drag coefficient in an undisturbed free stream. However, the cones

were located in the wake of the payload, and as a result they experienced

a somewhat different flow field because of their relative size with

respect to the payload. Thus the difference in the drag coefficient for

these two cones can be attributed primarily to the wake effects of the

preceding body. Similar results are observed in figure 7 where a 60 ° cone

was towed behind payloads B and C with ratios of cone base diameter to

payload base diameter of 2.05 and 0.88, respectively. Note that pay-

loads B and C had different shapes; this difference in shape would prob-

ably have some influence on the drag coefficient. Based on the present

tests and limited amount of other data available, the ratio of decelera-

tor base diameter to payload base diameter should be at least equal to

or greater than one and preferably around three (ref. 7).

Effect of tow cable and tow-cable length on the drag of decelerators.-

The effect of a tow cable on the drag of a cone was determined with a

rod simulating the tow cable and attached to a sting-supported 60 ° cone.

The cone was tested in the wake of payload A at three free-stream Mach

numbers and at trailing-distance ratios Z/dp from 2 to 6. Results,

as shown in figure 8, indicate that the rod caused a small reduction in

drag at all three Mach numbers for values of Z/dp greater than 3; for
!



Z/dp values less than 3, no difference in drag was observed. The slight

reduction in drag due to the rod is not significant in itself; but the

presence of the rod becomes important at higher cone angles or as the

cones approach the critical Mach number at which separation of the shock

from the vertex of a cone occurs (see fig. 4]. The presence of the rod

causes a detachment of shock to occur at higher Mach numbers than for

the cone alone in the free stream, and this result produces adverse

effects on the drag and stability of a towed cone.

Figures 9 and I0 show the flow field for various cones behind pay-

load C at several Mach numbers. At supersonic speeds the wake from a

payload can be divided into three regions. As the downstream distance

from the payload increases, these regions may be defined as subsonic,

transitlon_ and supersonic regions, each having a distinct characteristic.

In the subsonic region a towed cone may be completely immersed in

the wake of the payload and its behavior characterized by low drag and

a lack of stability. For example, only the 60 ° cone was sufficiently

stable to be tested in this region; all others, 70 ° , 80 °, and 90° cones,

were unstable. A schlieren picture of a 60 ° cone operating in this flow

region is shown in figure 9 (Z/dp : 2.0).

The transition region is where the flow field in front of a cone

changes from subsonic to supersonic or vice versa. Location of this

region behind the payload will depend upon the ratio of payload base

diameter to cone base diameter, payload shape, and the free-streamMach

number. A good example of this region is shown in reference 8, where

60 ° and 90 ° sting-supported cones were tested in the wake of a payload

at free-stream Mach numbers from 1.5 to 6. 2n the present investiga-

tion, drag data for towed cones could not be obtained in the transition

region because the cones were extremely unst_ble in this region. For

a given payload and decelerator, the transitfon-region location is

primarily a function of Mach number which, oi" course, changes throughout

the payload trajectory. In order to determire the minimum tow-cable

length that is required to avoid the transitfon region, it would be

necessary to establish only the most rearwarc point of the transition

region in the trajectory. For the configuralions investigated, in no

case did the transition point occur for values of Z/dp greater than 3_

therefore, a tow-cable length equal to three times the payload base

diameter should be of sufficient length to avoid both the subsonic and

transition regions.

The supersonic region is characterized ]_ high drag (approximately

twice that in the subsonic region) and good _tability for cones having

included angles up to about 90 ° . In this region the variation in drag

with increasing trailing distance is small, as can be seen in most of

the figures.
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In order to minimize adverse wake effects on the drag of a cone_

there are two design variables that can be selected: either the tow-

cable length can be increased to place the cone where the wake effects

are small, or the size of the decelerator with respect to the payload

can be increased. In either case, increasing the length of a tow cable

beyond the transition region or increasing the size of a cone will add

weight which will have to be justified by the increase in drag thus

obtained.

Effect of cone ankle.- The expected drag-coefficient increase with

increase in cone angle can be seen in figure ii for all cones except the

90o cone at a Mach number of 2.30 and the 90o cone at Mach numbers of 2.96

and 4.65 for short tow-cable lengths. The low drag values for the 90o

cone are believed to have been caused by the detachment of a shock from

the cone. Schlieren photographs indicate that the detachment of shock

from the 90o cone in the payload wake occurred at higher Mach numbers

than is shown in figure 4. The detachment of a shock from the 900 cone

at higher Mach numbers was probably caused by both the presence of the

tow cable and the flow field surrounding the cone, since this flow field

was different from that of the free stream on which figure 4 was based.

At a Mach number of 4.65 and _-_ = 2.8 there was also a detachment of
dp

shock from the 90 ° cone (fig. lO(c)); however, in this instance the

impingement of the trailing shocks from the payload on the cone was prob-

ably the major cause. Visual observations in the course of this inves-

tigation showed that the stability of the cones decreased with increasing

cone angle. The 90o cone could not be considered entirely stable inas-

much as its stability varied between violent oscillations and relatively

calm periods. Thus, the 80 ° cone would probably be more suitable as a

decelerator, although some drag may be compromised for stability.

The low drag-coefficient values (indicated in fig. ii) at a Mach

number of 2.50 for 60 ° and 80 ° cones and _/dp of 6.0 and 6.8, respec-

tively, were caused by the sting support influencing the base pressure

of the cones. This effect can be seen in the schlieren photograph

shown in figure 9 for the 60 ° cone. No suitable explanation was found

for the decrease in drag coefficient with increase in %/dp at free-

stream Mach numbers of 3.83 and 4.65 (fig. ii). Similar effects were

observed in reference 8 for a 900 cone between Mach numbers of 3 and 5.

CONCLUSIONS

The investigation of 60 °, 70° , 80 ° , and 90 ° cones used as decelera-

tors at supersonic speeds in the wake of several payloads has led to the

following conclusions:
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1. A cone with an included angle between 80 ° and 90 ° would be most

suitable for use as a decelerator in the Mach number regions of this

investigation. From visual observations in the course of this investiga-

tion it was established that the stability of the cones decreased with

increasing cone angle. The 90o cone was intermittently unstable at the

test Mach numbers.

2. For the configurations investigated at Mach numbers up to 4.65,

a trailing distance of three payload base dismeters would be sufficient

to avoid low drag and instability regions of the decelerator.

3. The ratio of cone base diameter to payload base diameter should

be at least equal to or greater than one in crder to minimize adverse

wake effects.

4. The presence of the tow cable had little influence on the drag

coefficient of a cone except at large cone angles and at critical Mach

numbers where shock detachment from the cone took place. In these

instances the tow cable caused detachment of the shock at higher Mach

numbers than would be expected from the shock-wave theory, and this

result produced adverse effects on the drag _nd stability of the cone.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Air Force Base, Va., September 27, 1961.
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TABLEI. - TESTCONDITIONS

Payload base Conebase Cone
Payload diameter, dp, diameter, dc, angle, 0,

in. in. deg

Test section i: M_ of 1.57, 2. DO,and 2.87

A I 4.9 4. 210 60

A I 4.9 3.240 60

Test section 2: M_ of 2.50, 2.96, 3.83 and 4.65

B
C
C
C
C

2.4
5.5
5.5
5.5
5.5

4.875
4.875
4.875
4.875
4.875

6O
6O

7O
8o

9o

L

i

5
0

5



ll

0

! 0

_-_

o
P_

r_

cl m
0 _

_ 0
_0 ,--I

_ o

0 r_
,--t

0 _aO
0

C.I

¢..1

!

A

.r--I



12

!

L-60-4419

L-60-4421
(b) Photographs of payload B mounted on a strut.

Figure i.- Concluded.
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Figure 2.- Drawing of three types of payloads used in this

investigation. All linear dimensions are in inches.
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Figure 4.- Variation of pressure drag coefficient with t_ach number

for different cone angles.
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